Synthesis of Novel Antimicrobial and Food‐Preserving Hydrogel Nanocomposite Films Based on Carboxymethylcellulose

Author:

Elmehbad Noura Y.1,Mohamed Nadia A.23ORCID,El‐Ghany Nahed A. Abd3ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science and Arts Najran University Najran Saudi Arabia

2. Department of Chemistry College of Science Qassim University Buraidah 51452 Saudi Arabia

3. Department of Chemistry, Faculty of Science Cairo University Giza 12613 Egypt

Abstract

AbstractThe microbial resistance to the traditional antibiotics causes serious health problems and increases day by day. Thus, there is a pressing need to discover alternative antimicrobial agents of different nature than that of the conventional antibiotics. For this, novel hydrogel nanocomposite films are prepared by chemical crosslinking grafting of carboxymethyl cellulose with N,N′‐methylene‐bis‐acrylamide (CMC‐g‐MBA), which subsequently followed by loading two different weight ratios of titanium oxide nanoparticles (TiO2NPs), such as 3% (CMC‐g‐MBA/TiO2NPs‐3%) and 5% (CMC‐g‐MBA/TiO2NPs‐5%) wt%. Their chemical structure and surface morphology are confirmed using appropriate analytical techniques. Their antimicrobial activity can be arranged as follows: CMC‐g‐MBA/TiO2NPs‐5% composite > CMC‐g‐MBA/TiO2NPs‐3% composite > CMC‐g‐MBA hydrogel. While, the native CMC has no observable antimicrobial effect. CMC‐g‐MBA/TiO2NPs‐3% composite imparts good barrier properties to the coated tomato fruits, delaying their spoilage and protecting them from the environmental microbes compared to the uncoated ones. CMC‐g‐MBA/TiO2NPs‐5% composite is safe on the normal human cells. Thus, incorporation of both MBA and TiO2NPs into CMC greatly develops its antimicrobial activity and provides a wonderful approach to attain promising materials that can efficiently compete with conventional antibiotics.

Funder

Najran University

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3