Gain margin and Lyapunov analysis of discrete‐time network synchronization via Riccati design

Author:

Zhang Liangyin1,Chen Michael Z. Q.1ORCID,Zou Yun1,Chen Guanrong2

Affiliation:

1. School of Automation Nanjing University of Science and Technology Nanjing China

2. Department of Electrical Engineering City University of Hong Kong Hong Kong China

Abstract

SummaryThis paper deals with solution analysis and gain margin analysis of a modified algebraic Riccati matrix equation, and the Lyapunov analysis for discrete‐time network synchronization with directed graph topologies. First, the structure of the solution to the Riccati equation associated with a single‐input controllable system is analyzed. The solution matrix entries are represented using unknown closed‐loop pole variables that are solved via a system of scalar quadratic equations. Then, the gain margin is studied for the modified Riccati equation for both multi‐input and single‐input systems. A disc gain margin in the complex plane is obtained using the solution matrix. Finally, the feasibility of the Riccati design for the discrete‐time network synchronization with general directed graphs is solved via the Lyapunov analysis approach and the gain margin approach, respectively. In the design, a network Lyapunov function is constructed using the Kronecker product of two positive definite matrices: one is the graph positive definite matrix solved from a graph Lyapunov matrix inequality involving the graph Laplacian matrix; the other is the dynamical positive definite matrix solved from the modified Riccati equation. The synchronizing conditions are obtained for the two Riccati design approaches, respectively.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering,Biomedical Engineering,General Chemical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3