Development of deep eutectic solvent–based microwave‐assisted extraction combined with temperature controlled ionic liquid–based liquid phase microextraction for extraction of aflatoxins from cheese samples

Author:

Kaboodi Aso1,Mirzaei Hamid12ORCID,Katiraee Farzad3,Javadi Afshin12ORCID,Afshar Mogaddam Mohammad Reza45ORCID

Affiliation:

1. Department of Food Hygiene Faculty of Veterinary Medicine, Tabriz Medical Sciences Islamic Azad University Tabriz Iran

2. Health Promotion Research Center Tabriz Medical Sciences Islamic Azad University Tabriz Iran

3. Department of Pathobiology, Faculty of Veterinary Medicine University of Tabriz Tabriz Iran

4. Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran

5. Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran

Abstract

In this study, for the first time, a deep eutectic solvent‐based microwave‐assisted extraction was combined with ionic liquid–based temperature controlled liquid phase microextraction for the extraction of several aflatoxins from cheese samples. Briefly, the analytes are extracted from cheese sample (3 g) into a mixture of 1.5 mL choline chloride:ethylene glycol deep eutectic solvent and 3.5 mL deionized water by exposing to microwave irradiations for 60 s at 180 W. The liquid phase was taken and mixed with 55 μL 1‐hexyl‐3‐methylimidazolium hexafluorophosphate. By cooling the solution in the refrigerator centrifuge, a turbid state was obtained and the analytes were extracted into the ionic liquid droplets. The analytes were determined by high‐performance liquid chromatography equipped with fluorescence detector. Low limits of detection (9–23 ng kg–1) and quantification (30–77 ng kg–1), high extraction recovery (66%–83%), acceptable enrichment factor (40–50), and good precision (relative standard deviations ≤ 5.2%) were obtained using the offered approach. These results reveal the high extraction capability of the method for determination of aflatoxins in the cheese samples. In this method, there was no need for organic solvents and it can be considered as green extraction method.

Publisher

Wiley

Subject

Filtration and Separation,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3