Affiliation:
1. Mathematical Institute University of Oxford, Radcliffe Observatory Quarter Oxford UK
2. Department of Pure Mathematics and Mathematical Statistics Cambridge UK
3. Department of Mathematical Sciences University of Memphis Memphis Tennessee USA
4. IMPA Rio de Janeiro Brazil
5. Clerkenwell London UK
Abstract
AbstractWe study monotone cellular automata (also known as ‐bootstrap percolation) in with random initial configurations. Confirming a conjecture of Balister, Bollobás, Przykucki and Smith, who proved the corresponding result in two dimensions, we show that the critical probability is non‐zero for all subcritical models.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
European Research Council
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Israel Science Foundation
National Science Foundation of Sri Lanka
Subject
Applied Mathematics,Computer Graphics and Computer-Aided Design,General Mathematics,Software
Reference16 articles.
1. The critical length for growing a droplet;Balister P.;Mem. Amer. Math. Soc.
2. P.Balister B.Bollobás R.Morris andP.Smith.Universality for monotone cellular automata. preprint arXiv:2203.13806.
3. Subcritical $\mathcal {U}$-bootstrap percolation models have non-trivial phase transitions
4. Universality for two‐dimensional critical cellular automata
5. Monotone Cellular Automata in a Random Environment
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Kinetically constrained models out of equilibrium;Probability and Mathematical Physics;2024-05-26
2. Triangle Percolation on the Grid;Discrete & Computational Geometry;2024-04-25