Effect of e‐waste materials as filler in the flax woven fiber reinforced polymer composite for a sustainable environment

Author:

Raj J. Immanuel Durai1ORCID,Durairaj R. B.2,Ananth S. Vijay3,Meenakshisundaram Nagaraj4

Affiliation:

1. Faculty of Mechanical Engineering Sathyabama Institute of Science and Technology Chennai Tamil Nadu India

2. School of Mechanical Engineering Sathyabama Institute of Science and Technology Chennai Tamil Nadu India

3. Department of Mechanical Engineering VELS Institute of science, Technology & Advanced Studies Chennai Tamil Nadu India

4. Department of Agricultural Engineering Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India

Abstract

AbstractThe main aim of the present investigation is to fabricate waste printed circuit board (WPCB) particles and woven bidirectional flax fiber mat reinforced polymer matrix composite through a hand layup technique followed by vacuum bagging technique and examine its mechanical properties using the Universal Testing Machine (UTM), compression testing machine, and Shore D hardness tester. The WPCB particles with weight percentages of 0, 5, 10, 15, and 20 were used as reinforcement along with five layers of flax fiber mat to improve the adhesion behavior of epoxy resin with reinforcements and thereby improve the properties. The XRF (X‐ray fluorescence) investigation of the prepared WPCB particles confirmed the existence of various toxic elements in the processed printed circuit board (PCB). The scanning electron microscopy (SEM) analysis confirmed the presence of WPCB particles in the composite, along with flax fiber and resin. The tensile, compression, impact test shows that that the 15 wt.% WPCB particles reinforced flax fiber polymer composite gave betters properties, and the reduction of properties was seen thereafter. The percentage of water absorption increased with the weight percentage of the WPCB particles from 0% to 20%. Results indicate that the biodegradable flax fiber composites impregnated with WPCB filler can be utilized for many engineering and domestic applications.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3