Bayesian benchmark dose risk assessment with mixed‐factor quantal data

Author:

Glisovic‐Bensa Mirjana1,Piegorsch Walter W.23ORCID,Bedrick Edward J.123

Affiliation:

1. Department of Epidemiology & Biostatistics University of Arizona Tucson Arizona USA

2. Interdisciplinary Program in Statistics & Data Science University of Arizona Tucson Arizona USA

3. BIO5 Institute University of Arizona Tucson Arizona USA

Abstract

AbstractBenchmark analysis is a general risk estimation strategy for identifying the benchmark dose (BMD) past which the risk of exhibiting an adverse environmental response exceeds a fixed, target value of benchmark response. Estimation of BMD and of its lower confidence limit (BMDL) is well understood for the case of an adverse response to a single stimulus. In many environmental settings, however, one or more additional, secondary, qualitative factor(s) may collude to affect the adverse outcome, such that the risk changes with differential levels of the secondary factor. Bayesian methods for estimation of the BMD and BMDL have grown in popularity, and a large variety of candidate dose–response models is available for applying these methods. This article applies Bayesian strategies to a mixed‐factor setting with a secondary qualitative factor possessing two levels to derive two‐factor Bayesian BMDs and BMDLs. We present reparameterized dose–response models that allow for explicit use of prior information on the target parameter of interest, the BMD. We also enhance our Bayesian estimation technique for BMD analysis by applying Bayesian model averaging to produce the BMDs and BMDLs, overcoming associated questions of model adequacy when multimodel uncertainty is present. An example from environmental carcinogenicity testing illustrates the calculations.

Publisher

Wiley

Reference35 articles.

1. A Bayesian Monotonic Non-parametric Dose-Response Model

2. Model Uncertainty and Risk Estimation for Experimental Studies of Quantal Responses

3. A Bayesian model‐based approach for determining multivariate tolerable regions;Boone E. L.;Journal of Environmental Statistics,2015

4. A new method for determining allowable daily intakes*1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3