Effects of flow rate and wastewater concentration on the transformation of nitrogen in sediment–water system of sewage pipelines

Author:

Xie Yuling1,Liu Cuiyun12ORCID,Zhou Changfeng1,Wei Haodong1,Tao Yang1,Zhou Jie1

Affiliation:

1. College of Urban Construction Nanjing Tech University Nanjing China

2. Jiangsu Key Laboratory of Industrial Water‐Conservation & Emission Reduction Nanjing Tech University Nanjing China

Abstract

AbstractIn this work, the transformation law of nitrogen in sediment–water system under different flow rates and wastewater concentrations were investigated in a simulated sewage pipeline system. Results showed that the different flow rates and wastewater concentrations in the pipeline caused differences in microbial community in sediments and nitrogen transformation. When the flow rate increased from 0.05 to 0.2 m/s, the scouring effect was enhanced, resulting in higher concentrations of NH4+–N and NO3–N in the overlying water. At 0.2 m/s, the relative abundance of Clostridium_sensu_stricto_1 in sediments was higher, resulting in a greater conversion of amino acid nitrogen (AAN) to NH4+–N. Meanwhile, many denitrifying bacteria (Trichococcus, Dechloromonas, norank_f__norank_o__Gaiellales, Thiobacillus) had high relative abundance in the sediments, and the denitrification process was common. When the wastewater concentration was high, the nitrification reaction was great in overlying and interstitial water. Moreover, the ammoniation process was great in the sediments, and the variation flux of AAN was large (remarkably reduced).Practitioner Points AAN transformed to NH4+–N in sediment under different flow rate and concentration. Scouring was enhanced at 0.2 m/s, increasing nitrogen contents in overlying water. Difference in microbial community led to more AAN conversion to NH4+–N at 0.2 m/s. The ammoniation process was greater in sediment at a high concentration of sewage. NH4+–N migrated from overlying water to sediment at a high concentration of sewage.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Water Science and Technology,Ecological Modeling,Waste Management and Disposal,Pollution,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3