Affiliation:
1. Institute of Applied Technology and Sustainable Development Nguyen Tat Thanh University Ho Chi Minh City Vietnam
2. Faculty of Automotive Engineering, School of Technology Van Lang University Ho Chi Minh City Vietnam
3. Department of Chemical Engineering, School of Chemical and Environmental Engineering International University Ho Chi Minh City Vietnam
4. Vietnam National University Ho Chi Minh City Vietnam
Abstract
AbstractA large amount of dye effluents with biodegradable and highly toxic nature from the dyeing and finishing processes has discharged into natural water bodies without adequate treatment, which adversely impacted on aquatic life and human health. Herein, polyvinyl alcohol/agarose/maltodextrin composite membrane (PAM)‐reinforced durian skin fiber is fabricated for methylene blue (MB) uptake from aqueous medium. Structural analyses of the as‐prepared composite membrane are conducted using scanning electron microscopy, Fourier‐transform infrared spectroscopy, water contact angle, and nitrogen adsorption/desorption isotherm measurement. The important influence of experimental conditions including exposure time between adsorbates and adsorbents, initial MB concentration, solution temperature, and pH are also explored. Furthermore, thermodynamic behavior, nonlinear isotherms, and kinetics along with possible adsorption mechanism are provided to attain the insight into the adsorption nature. The results show that PAM‐reinforced durian peel waste possesses high MB adsorption capacity (105.54 mg g−1), which was controlled by diffusion and chemisorption mechanism. The thermodynamics of methyl blue removal on the composite membrane suggest that the adsorption is spontaneous, favorable, and endothermic in nature. This contribution is expected to inspire the efficient utilization of agriculture by‐products into eco‐friendly and biodegradable adsorbents to purify the dye‐contaminated water.
Funder
Nguyen Tat Thanh University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献