Adsorptive removal of methylene blue dye using durian peel waste reinforced polyvinyl alcohol‐based composite membrane

Author:

Pham Bao‐Tran Tran1ORCID,Nguyen Dai Van2,Phung Thanh Khoa34ORCID,Nguyen Thuong Thi1ORCID

Affiliation:

1. Institute of Applied Technology and Sustainable Development Nguyen Tat Thanh University Ho Chi Minh City Vietnam

2. Faculty of Automotive Engineering, School of Technology Van Lang University Ho Chi Minh City Vietnam

3. Department of Chemical Engineering, School of Chemical and Environmental Engineering International University Ho Chi Minh City Vietnam

4. Vietnam National University Ho Chi Minh City Vietnam

Abstract

AbstractA large amount of dye effluents with biodegradable and highly toxic nature from the dyeing and finishing processes has discharged into natural water bodies without adequate treatment, which adversely impacted on aquatic life and human health. Herein, polyvinyl alcohol/agarose/maltodextrin composite membrane (PAM)‐reinforced durian skin fiber is fabricated for methylene blue (MB) uptake from aqueous medium. Structural analyses of the as‐prepared composite membrane are conducted using scanning electron microscopy, Fourier‐transform infrared spectroscopy, water contact angle, and nitrogen adsorption/desorption isotherm measurement. The important influence of experimental conditions including exposure time between adsorbates and adsorbents, initial MB concentration, solution temperature, and pH are also explored. Furthermore, thermodynamic behavior, nonlinear isotherms, and kinetics along with possible adsorption mechanism are provided to attain the insight into the adsorption nature. The results show that PAM‐reinforced durian peel waste possesses high MB adsorption capacity (105.54 mg g−1), which was controlled by diffusion and chemisorption mechanism. The thermodynamics of methyl blue removal on the composite membrane suggest that the adsorption is spontaneous, favorable, and endothermic in nature. This contribution is expected to inspire the efficient utilization of agriculture by‐products into eco‐friendly and biodegradable adsorbents to purify the dye‐contaminated water.

Funder

Nguyen Tat Thanh University

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3