Affiliation:
1. School of Life Sciences Nantong University Nantong China
Abstract
AbstractBACKGROUNDKiwifruit is highly susceptible to fungal pathogens, such as Botrytis cinerea, which reduce crop production and quality. In this study, dipicolinic acid (DPA), which is one of the main components of Bacillus spores, was evaluated as a new elicitor to enhance kiwifruit resistance to B. cinerea.RESULTSDPA enhances antioxidant capacity and induces the accumulation of phenolics in B. cinerea‐infected ‘Xuxiang’ kiwifruit. The contents of the main antifungal phenolics in kiwifruit, including caffeic acid, chlorogenic acid and isoferulic acid, increased after DPA treatment. DPA enhanced H2O2 levels after 0 and 1 days, which promoted catalase (CAT) and superoxide dismutase (SOD) activities, reducing long‐term H2O2 levels. DPA promoted the up‐regulation of several kiwifruit defense genes, including CERK1, MPK3, PR1‐1, PR1‐2, PR5‐1 and PR5‐2. Furthermore, DPA at 5 mM inhibited B. cinerea symptoms in kiwifruit (95.1% lesion length inhibition) more effectively than the commercial fungicides carbendazim, difenoconazole, prochloraz and thiram.CONCLUSIONSThe antioxidant properties of DPA and the main antifungal phenolics of kiwifruit were examined for the first time. This study uncovers new insights regarding the potential mechanisms used by Bacillus species to induce disease resistance. © 2023 Society of Chemical Industry.
Funder
National Natural Science Foundation of China
Subject
Insect Science,Agronomy and Crop Science,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献