Vibration characteristics of FG saturated porous annular plates integrated by piezoelectric patches on visco‐Pasternak foundation

Author:

Allah Gholi Amir Masoud1,Khorshidvand Ahmad Reza1ORCID,Jabbari Mohsen1,Khorsandijou S. Mahdi1

Affiliation:

1. Department of Mechanical Engineering South Tehran Branch Islamic Azad University Tehran Iran

Abstract

AbstractThe vibrational behavior of a three‐layered annular plate is considered in the present study. The plate is composed of a functionally graded (FG) porous core which is saturated by fluid and two piezoelectric patches that are bonded to the core and are subjected to the electric field. The whole of the structure is also rested on visco‐Pasternak elastic foundation. The material properties of the FG porous core vary through the thickness direction based on different patterns which are called porosity distributions. Love‐Kirchhoff's hypothesis and Hamilton's principle is employed to extract the governing motion equations and boundary conditions and following it, they are solved by generalized differential quadrature method (GDQM) for various boundary conditions. After ensuring the validity of the results by comparing them with known data in the literature, the effect of the most important parameters on the results is considered. It is seen that the effect of the porosity coefficient on the natural frequencies is completely dependent on the pores’ distribution patterns. Also, increasing in externally applied voltage to the piezoelectric facesheets, leads the results to enhance. The outcomes of this work can help to design and create smart structures and systems such as sensors and actuators.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Equivalent single‐layer Mindlin theory of laminated piezoelectric plates and application;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2024-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3