Affiliation:
1. Department of Civil Engineering National University of Sciences and Technology Balochistan Campus, Quetta Pakistan
2. School of Mechanical Engineering Jiangsu University Zhenjiang Jiangsu China
3. Industrial Engineering Department, College of Engineering King Saud University Riyadh Saudi Arabia
Abstract
AbstractThis study highlights the significance of entropy generation in the Falkner–Skan flow of Casson fluid past a wedge. To investigate the energy analysis, the governing equations include the heat transport equation in the presence of internal heat source, and the energy transport accounts for heat dissipation using viscous dissipation and Joule heating effect. The mathematical formulation of the problem leads to a set of nonlinear coupled partial differential equations. To obtain a similarity solution, similarity variables are introduced. The resulting differential equations are solved numerically using the shooting technique in conjunction with the Runge–Kutta–Fehlberg 45 (RKF‐45) method. Graphical representations are utilized to demonstrate the physical significance of the relevant parameters. The study analyzes the impact of various parameters on the velocity, temperature, and entropy distributions for three wedge positions: stationary, forward‐moving, and backward‐moving. The results show that an increase in the wedge angle parameter and Casson parameter leads to an increase in fluid velocity, while fluid entropy increases rapidly with an increase in the Brinkmann number, power law Falkner–Skan parameter, and Reynolds number. Moreover, with an increment in the Prandtl and Eckert number, the Nusselt number coefficient decelerates for both static and moving wedge.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献