Shear‐driven flow of an ionic fluid in a narrow vertical channel under a Hall electric field

Author:

Das Sanatan1ORCID,Karmakar Poly1,Ali Asgar2ORCID,Patra Ruma Rani3,Jana Rabindra Nath3

Affiliation:

1. Department of Mathematics University of Gour Banga Malda India

2. Department of Mathematics Bajkul Milani Mahavidyalaya Purba Medinipur India

3. Department of Applied Mathematics Vidyasagar University Midnapore India

Abstract

AbstractThis paper focuses on demonstrating the shear‐driven convective flow of an ionic optically thin fluid in a narrow channel formed by two vertical parallel plates subject to a Hall electric field. The Hall electric field induces Hall currents, amending the flow dynamics of the ionic fluid. The setup involves a stationary left wall and a right wall that either undergoes impulsive motion (IM) or accelerated motion (AM), which initiates the fluid flow. A unified closed‐form solution for flow‐regulating equations is derived by harnessing the Laplace transform (LT) approach. The upshots of cardinal parameters on the velocity components and temperature distributions, shear stresses, and rate of heat transfer (RHT) are elucidated via graphics for both IM and AM scenarios. The graphs reveal that an intensification in the Hall parameter notably boosts the velocity components in both IM and AM cases. The primary and secondary velocities are consistently higher for IM than AM. The magnitude of shear stresses at the moving wall is always greater for IM than AM. Additionally, the shear stresses at the moving wall are notably greater for IM than AM, and the RHT at the moving wall reduces as the radiation parameter amplifies. The significant findings of this research have potential applications in electromagnetic propulsion systems, like plasma or ion thrusters, commonly employed in propelling spacecraft.

Publisher

Wiley

Reference47 articles.

1. An Introduction to Fluid Dynamics

2. An Introduction to Magnetohydrodynamics

3. Magnetohydrodynamic flow in horizontal concentric cylinders;Kumar D.;Int. J. Ind. Math.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3