Exploring shape and size variations significance in hybrid nanofluid flow via rotating porous channel

Author:

Raza Qadeer1,Wang Xiaodong1,Ali Bagh2ORCID,Shah Nehad Ali3ORCID

Affiliation:

1. School of Mathematics and Statistics Xi'an Key Laboratory of Scientific Computation and Applied Statistics Northwestern Polytechnical University Xi'an China

2. School of Mechanical Engineering and Automation Harbin Institute of Technology Shenzhen China

3. Department of Mathematics Saveetha School of Engineering, SIMATS Chennai India

Abstract

AbstractThe current study investigates the thermal performance characteristics of metallic (Cu) and non‐metallic (TiO2) nanoparticles (NPs), considering variations in their shapes and sizes. Specifically, analysis is conducted for four distinct stable shapes of NPs. A hybrid model is developed to analyze the influence of rotating porous walls on the system, particularly focusing on the impact of the permeable Reynolds number and NPs within a specific range of , in conjunction with a Newtonian fluid under the influence of magnetohydrodynamics (MHDs). Additionally, we examine the phenomena of expansion/contraction in heat and mass transfer enhancement with chemical reactions. The governing partial differential equations (PDEs) are transformed into nonlinear differential equations using the help of similarity transformation. A 4th‐order Runge–Kutta method (RK), coupled with the shooting technique, is employed as a mathematical strategy to numerically solve these nonlinear differential equations. Boosting the values of 𝐾𝑐𝑟 from 2 to 10 enhances the mass transfer rate between both porous channels. Higher values of 𝑅𝑒, 𝑀, and 𝑅 lead to increasing skin friction coefficients for both porous channels. Raising the values of both NP volume fractions ( from 1% to 5% results in enhanced heat transfer rates particularly for much better in platelet‐shaped NPs as compared to other shapes such as spherical, brick, and cylinder. Larger values of 𝛼, M, and Re cause the radial velocity profile to exhibit opposite behaviors in the middle of the wall and momentum boundary layer thickness.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3