On Barenblatt's pseudoparabolic equation with forcing on the half‐line via the Fokas method

Author:

Chatziafratis Andreas1234ORCID,Fokas Athanassios S.256,Aifantis Elias C.789

Affiliation:

1. Department of Mathematics and Statistics School of Pure and Applied Sciences University of Cyprus Nicosia Cyprus

2. Mathematics Research Center Academy of Athens Athens Greece

3. Institute of Applied and Computational Mathematics FORTH Greece

4. Department of Mathematics National and Kapodistrian University of Athens Athens Greece

5. Department of Applied Mathematics and Theoretical Physics University of Cambridge Cambridge UK

6. Viterbi School of Engineering University of Southern California Los Angeles California USA

7. Friedrich‐Alexander University of Erlangen‐Nuremberg Nurnberg Germany

8. Laboratory of Mechanics and Materials, College of Engineering Aristotle University Thessaloniki Greece

9. College of Engineering Michigan Technological University Michigan USA

Abstract

AbstractA novel technique is presented for explicitly solving inhomogeneous initial‐boundary‐value problems (IBVPs) (Dirichlet, Neumann and Robin) on the half‐line, for a well‐known pseudo‐parabolic partial differential equation. This so‐called Barenblatt's equation arises in a plethora of important applications, ranging from heat‐mass transfer, solid‐fluid‐gas dynamics and materials science, to mechanical, chemical and petroleum engineering, as well as electron physics, radiation and diffusive processes. Our approach is based on the extension of the Fokas method, so that it can be applied to problems with mixed derivatives. First, we derive formally effective solution representations and then justify a posteriori their validity rigorously. This includes the reconstruction of the prescribed initial and boundary conditions, which requires careful analysis of the various integral terms appearing in the formulae, proving that they converge in a strictly defined sense. In each type of IBVP, the novel formulae are utilized to rigorously deduce the solution's regularity properties near the boundaries of the spatiotemporal domain and the problem's well‐posedness. Furthermore, importantly, our solutions’ numerical advantages are demonstrated and highlighted by way of a concrete and illustrative example. Our rigorous approach can be extended to IBVPs for other significant models.

Publisher

Wiley

Subject

Applied Mathematics,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3