Turbulent heat and mass lines in finite difference regime

Author:

S P Suresha1,Reddy G. Janardhana1ORCID,Basha Hussain2ORCID

Affiliation:

1. Laboratory on Computational Fluid Dynamics Department of Mathematics Central University of Karnataka Kalaburagi India

2. Department of Mathematics Government Degree College Sindhanur Karnataka India

Abstract

AbstractFinite difference modelling of turbulent heat and mass flow visualization finds numerous applications in atmospheric flows/oceanic currents, wind turbines, thermal transfer in nuclear reactors, drag in oil pipelines, cooling of industrial machineries, and to investigate the complexity, dynamic and chaotic nature of the physical system. A turbulent phenomenon is effectively implemented in engineering, physics, earth sciences, bio‐engineering and medicine. Hence, motivated by the advantages of turbulence in various engineering fields, in the current article, a finite difference analysis is performed to demonstrate the k‐ε turbulence model‐based heat and mass lines visualization in boundary layer regime under turbulent buoyancy‐driven convective conditions along a cylinder. Turbulent flow characteristics are accurately explored by deploying the classical Newtonian flow model. Further, to accomplish a more sophisticated finite difference simulation, the effects of extra kinetic energy and its dissipation rate equations are considered. The produced Navier‐Stokes equations for time‐dependent turbulent heat and mass transmission are rendered to non‐dimensional by deploying suitable dimensionless numbers. The advanced coupled nonlinear turbulent unsteady buoyancy‐motivated vertical convection problem is then solved with a well‐sophisticated finite difference scheme such as Crank‐Nicolson technique using computational software. Authentication of current results with former solutions over a range of buoyancy number, Schmidt, and Prandtl parameters are presented. An extensive tabular and graphical discussion along with contours, heat and masslines visualization is included to enumerate the hydro‐dynamic, thermal and mass diffusion behaviour for the impact of emerged regulating numbers in the Prandtl regime. It is confirmed that, the accelerating turbulent buoyancy‐ratio number, maximizes the velocity, kinetic energy and dissipation rate at . Further, the numerical values of laminar thermal and mass diffusion rates are monotonically enhanced when compared to the turbulent values. Also, to verify the current findings, the authors compared the LRN k‐ε model turbulent results with the existing solutions and found good agreement. Further, the uniqueness and novelty of the current investigation is the exploration of heat and masslines in unsteady buoyancy‐driven convection regime under the influence of k‐ε turbulence model which extends the former studies and offers a more precise appraisal of the thermal and mass diffusion lines via the Crank‐Nicolson analysis.

Publisher

Wiley

Subject

Applied Mathematics,Computational Mechanics

Reference52 articles.

1. Visualization experiment of complex flow field in a sphere‐packed pipe by detailed PIV measurement;Shinji E.;Fusion Eng. Des.,2014

2. Experimental investigation of conical bubble structure and acoustic flow structure in ultrasonic field;Ma X.;Ultrason. Sonochem.,2017

3. Experimental investigation on engine intake port flow‐field visualization;Ma H.W.;CICEE,2013

4. Visualization of microscale cavitating flow regimes via particle shadow sizing imaging and vision based estimation of the cone angle;Morteza G.;Exp. Therm. Fluid Sci.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3