A low‐rank method for parameter‐dependent fluid‐structure interaction discretizations with hyperelasticity

Author:

Benner Peter12ORCID,Richter Thomas2,Weinhandl Roman12ORCID

Affiliation:

1. Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany

2. Otto von Guericke University Magdeburg Magdeburg Germany

Abstract

AbstractFluid‐structure interaction models are used to study how a material interacts with different fluids at different Reynolds numbers. Examining the same model not only for different fluids but also for different solids allows to optimize the choice of materials for construction even better. A possible answer to this demand is parameter‐dependent discretization. Furthermore, low‐rank techniques can reduce the complexity needed to compute approximations to parameter‐dependent fluid‐structure interaction discretizations. Low‐rank methods have been applied to parameter‐dependent linear fluid‐structure interaction discretizations. The linearity of the operators involved allows to translate the resulting equations to a single matrix equation. The solution is approximated by a low‐rank method. In this paper, we propose a new method that extends this framework to nonlinear parameter‐dependent fluid‐structure interaction problems by means of the Newton iteration. The parameter set is split into disjoint subsets. On each subset, the Newton approximation of the problem related to the median parameter is computed and serves as initial guess for one Newton step on the whole subset. This Newton step yields a matrix equation whose solution can be approximated by a low‐rank method. The resulting method requires a smaller number of Newton steps if compared with a direct approach that applies the Newton iteration to the separate problems consecutively. In the experiments considered, the proposed method allows to compute a low‐rank approximation up to twenty times faster than by the direct approach.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Reference34 articles.

1. A monolithic ALE Newton–Krylov solver with multigrid‐Richardson–Schwarz preconditioning for incompressible fluid‐structure interaction;Aulisa E.;Comput. Fluids,2018

2. Computational Fluid-Structure Interaction

3. A finite element pressure gradient stabilization for the Stokes equations based on local projections;Becker R.;Calcolo,2001

4. Becker R. Braack M. Meidner D. Richter T. Vexler B.:The finite element toolkit gascoigne 3d Zenodo(2021).https://doi.org/10.5281/zenodo.5574969

5. Lecture Notes in Computational Science and Engineering;Benner P.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3