Vibration control and analysis of Terfenol‐D functional gradient material beams with porosities: Linear and nonlinear perspectives in thermal environments

Author:

Oudra Abderrahim1,Khouddar Yassine El12ORCID,Adri Ahmed2,Outassafte Omar23,Hantati Issam El23,Isksioui Hamza1,Moussami Haj El1

Affiliation:

1. Engineering of Complex Systems and Structures (ECSS) ENSAM Moulay Ismail Meknes Morocco

2. Laboratory of Mechanics Production and Industrial Engineering (LMPGI) High School of Technology (ESTC) Hassan II University of Casablanca Oasis Casablanca Morocco

3. Doctoral Studies Center of National High School of Electricity and Mechanics (ENSEM) Hassan II University of Casablanca Oasis Casablanca Morocco

Abstract

AbstractThis paper investigates the vibration characteristics, both linear and non‐linear, of beams made from functional gradient materials (FGMs) with layers of Terfenol‐D attached to the top and bottom surfaces. Given the porosities that can occur during the manufacture of FGMs, the study examines the vibrational behaviour of beams with porosities. Euler–Bernoulli beam theory and the von‐Kármán non‐linear deformation field are used to formulate a fundamental equation predicting the free dynamic vibration of Terfenol‐D FGM structures with porosities. To complete this analysis, the paper also presents the application of two advanced methods. The first method involves employing the generalised finite element method (GFEM) associated with the reduced quadrature finite element method (RQFEM). GFEM offers a versatile and powerful approach, while RQFEM provides a specific method for studying dynamic phenomena. The second method utilises a semi‐analytical approach, the variational iteration method (VIM), which examines and complements the first method. Furthermore, we have demonstrated substantial alignment between the proposed solution and the results of finite element analysis, as well as with the existing literature, underscoring the effectiveness and accuracy of our analytical approach. The study also explores the influences of material property distribution, thermal loading, and porosity volume fraction on the linear and non‐linear behaviour of Terfenol‐D FGM beams. This comprehensive exploration furnishes valuable information on the intricate interplay of factors affecting vibration dynamics and control mechanisms in these advanced composite structures, offering insightful perspectives into the potential application of Terfenol‐D FGM beams in various fields.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3