Thermal analysis of MHD unsteady Darcy‐Forchheimer thin film flow in a porous system

Author:

G Gomathy1,Kumar B. Rushi2ORCID

Affiliation:

1. Department of Science and Humanities Chennai Institute of Technology Tamil Nadu India

2. Department of Mathematics Vellore Institute of Technology Vellore Tamil Nadu India

Abstract

AbstractThis study has investigated a Darcy‐Forchheimer thin film flow over an extended horizontal surface with thermal radiation and chemical reaction effects. The governing time‐dependent equations have been non‐dimensionalized using similarity transformations and solved numerically using the fourth‐order Runge‐Kutta method and the shooting technique. The influence of magnetohydrodynamics, non‐uniform heat sourcing, viscous heat radiation, and chemical reactions on temperature, velocity, skin friction, Nusselt, and Sherwood numbers has been examined. Results have shown that porous media, magnetic field, and transient effects decrease the velocity profile, while thermal radiation and variable thermal properties enhance temperature distributions. Findings have indicated that the magnetic field and porosity enhance the skin friction coefficient whereas the heat transfer rate increases with Eckert number and Prandtl number. Rising the chemical reaction parameter from 0.2 to 0.5 rises the mass transfer rate by approximately 9.85%. The thermal analysis of MHD Darcy‐Forchheimer thin film flow in a porous system has been crucial for understanding heat transfer and fluid dynamics in complex environments. It helped in optimizing various engineering processes, such as cooling systems, filtration, and energy conversion, by providing insights into temperature distribution, convective heat transfer, and fluid behavior. This analysis has aided in designing efficient and reliable systems with improved performance and reduced energy consumption.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3