Numerical study of aphron drilling crosser fluids coating layer incorporated blood with zinc oxide (ZnO) nanoparticles injected in esophagus

Author:

Akbar Noreen Sher1ORCID,Hussain M. Fiaz2ORCID,Muhammad Taseer3

Affiliation:

1. Department of Mechanical Engineering College of Engineering, Prince Mohammad Bin Fahd University Al Khobar Saudi Arabia

2. Department of Mathematics COMSATS University Islamabad Vehari Campus Pakistan

3. Department of Mathematics, College of Science King Khalid University Abha Saudi Arabia

Abstract

AbstractThis study aims to explore a novel cross model for peristaltic flow, which has not been previously addressed. The focus is on investigating the peristaltic flow of an incompressible nanofluid within a vertically uniform channel. The current model has application in drug delivery, biomedical engineering, lab on chip etc. Utilizing peristaltic flow for drug delivery systems in symmetric channels offers precise control over fluid motion, non‐Newtonian fluids, such as polymer solutions used in drug formulations, exhibit complex flow behavior that can be manipulated through peristaltic pumping mechanisms. This application has the potential to revolutionize targeted drug delivery, enhancing therapeutic efficacy and minimizing side effects. Studying peristaltic flow in symmetric channels for non‐Newtonian fluids offers interdisciplinary insights and innovative applications. Understanding fluid rheology, channel geometry, and peristaltic pumping can lead to novel strategies for fluid control, with implications for healthcare, biotechnology, and materials science advancements. To simplify the complex system of nonlinear partial differential equations governing the flow, we consider long wavelengths and low Reynolds numbers. Subsequently, we employ Shooting methods to solve this system of equations, providing a comprehensive evaluation of the numerical results for key parameters such as velocity, temperature, concentration, and pressure gradient. The findings are presented through graphical representations of significant flow parameters.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3