Influence of anthropogenic and natural forcings on future changes in precipitation projected by the CMIP6–DAMIP models

Author:

Wang Yafang1ORCID,Zhao Tianbao12ORCID,Hua Lijuan3,Guan Xiaodan1ORCID,Xu Chuan4,Chen Qingxin5

Affiliation:

1. Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences Lanzhou University Lanzhou China

2. Key Laboratory of Regional Climate‐Environment Research for Temperate East Asia, Institute of Atmospheric Physics (IAP) Chinese Academy of Sciences (CAS) Beijing China

3. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

4. College of Atmospheric Sciences Nanjing University of Information Science and Technology Nanjing China

5. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC‐FEMD) Nanjing University of Information Science and Technology Nanjing China

Abstract

AbstractWarming has already changed the patterns of precipitation and increased the risk of extreme climate events. An assessment of the influences from anthropogenic and natural forcings on future changes in precipitation is therefore essential to define appropriate mitigation and adaptation policies. We assess the effects of natural (NAT) and anthropogenic forcings (greenhouse gases [GHG] and anthropogenic aerosols [AA]) on precipitation over land areas simulated under the Coupled Model Intercomparison Project Phase 6 (CMIP6) SSP2‐4.5 scenario. Our results indicate that changes in precipitation due to GHG forcing, AA forcing and all external forcings (ALL) are projected to increase by about 3.0%–24.8%, 1.1%–6.9% and 4.2%–31.2%, respectively, across most land areas in the twenty‐first century, especially over the mid‐ and high latitudes of the Northern Hemisphere and central Africa, with an increase in the mean and flattening of the probability distribution functions (PDFs). By contrast, the NAT‐induced changes are relatively small, with a slight increase in the mean of the PDFs. The frequencies of both future extreme precipitation and dry events are projected to increase by 11%–101% and 3%–72%, respectively, over many continental regions under the influence of external forcings, especially under GHG forcing. Fingerprinting detection shows that the signals of GHG (except for Australia), AA and ALL forcing are detectable at the likely level (signal‐to‐noise ratio >0.95; 66% confidence) over most land areas. The GHG signals are stronger and detected earlier (after 2010s, likely level) than the AA signals (after 2060s, likely level).

Funder

Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3