Provision of maximum connectivity resiliency with minimum cost to telecommunication networks through third‐party networks

Author:

Barbosa Fábio1ORCID,de Sousa Amaro12ORCID,Agra Agostinho13

Affiliation:

1. Instituto de Telecomunicações Universidade de Aveiro Aveiro Portugal

2. Dep. de Eletrónica, Telecomunicações e Informática Universidade de Aveiro Aveiro Portugal

3. CIDMA, Dep. de Matemática Universidade de Aveiro Aveiro Portugal

Abstract

AbstractIn telecommunication networks, full connectivity resilience to multiple link failures is too costly as it requires a network topology with too many redundant links. Alternatively, the connectivity resilience of a telecommunications network can be improved by resorting to available third‐party networks for temporary additional connectivity until the failing links are restored. In this approach, some nodes of the network must be selected in advance to act as gateway nodes to the third‐party networks when a multiple link failure event occurs. For a given network topology and a cost associated with each node to turn it into a gateway node to each of the third‐party networks, the aim is to select the gateway nodes providing maximum connectivity resilience at minimum cost. The Gateway Node Selection is defined as a bi‐objective optimization problem such that its Pareto‐optimal solutions represent different trade‐offs between cost and connectivity resilience. In this work, the connectivity resilience is modeled by the Critical Link Detection optimization problem. An exact optimization algorithm is proposed, based on a row generation algorithm and on set cover cuts. The computational results demonstrate the effectiveness of the proposed algorithm on four well‐known telecommunication network topologies.

Funder

European Regional Development Fund

Fundação para a Ciência e a Tecnologia

Publisher

Wiley

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3