Sample selection method using near‐infrared spectral information entropy as similarity criterion for constructing and updating peach firmness and soluble solids content prediction models

Author:

Liu Yande12ORCID,He Cong12,Jiang Xiaogang12

Affiliation:

1. School of Mechanical and Electrical Engineering East China Jiaotong University Nanchang Jiangxi China

2. School of intelligent Electromechanical Equipment Innovation Research Institute East China Jiaotong University Nanchang Jiangxi China

Abstract

AbstractWhen using near‐infrared (NIR) techniques for analysis, model construction and maintenance updates are essential. When model construction is performed in machine learning, the sample set is usually divided into the calibration set and the validation set. The representativeness of the calibration set and the reasonable distribution of the validation set affects the accuracy of the established model. In addition, when maintaining and updating models, selecting the most informative updated sample not only improves the model prediction accuracy but also reduces sample preparation. In this paper, the spectral information entropy (SIE) is proposed to be used as a similarity criterion for dividing the sample set and use this criterion to select updated samples. The Kennard–Stone (KS) and the sample set portioning based on joint xy distance (SPXY) methods were used for comparison to verify the superiority of the proposed method. The results showed that the model built after dividing the sample set using the SIE method has good prediction effect compared with KS and SPXY method. When predicting soluble solid content (SSC) and hardness, the prediction determination coefficient ( ) was improved by more than 15%, and the root mean square error (RMSE) of prediction was reduced by 50%. In terms of model updating, selecting a small number of updated samples using the SIE method can improve the correlation coefficient ( ) to more than 80%, and updated models' prediction accuracy is higher than that of KS and SPXY method. It is confirmed that the SIE method can make the NIR analysis technique more reliable.

Funder

National Key Research and Development Program of China

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

Wiley

Subject

Applied Mathematics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3