Bis(thiosemicarbazide)gallium(III) Complexes as Potent Anticancer Agents by ROS Induction and Mitochondrial Pathway Activation

Author:

Zhou Xuan1,Wu Yuanyuan1,Yang Yun1,Du Jia‐Jia1,Sang Ruoxi2,Zhou Sihan1,Li Xiangyu1,Feng Qihong1,Zhao Qihua1,Xu Jinyuan2,Xie Mingjin1

Affiliation:

1. School of Chemical Science and Technology Yunnan University Kunming China

2. Department of Chemical Biology and Tianjin key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy Tianjin Medical University Tianjin China

Abstract

ABSTRACTA series of bis(thiosemicarbazide)gallium (III) complexes were synthesized and characterized by infrared spectroscopy, mass spectrometry, nuclear magnetic resonance, single‐crystal x‐ray crystallography, and density functional theory (DFT) calculation. The cytotoxicity of these gallium(III) complexes (CP 1–4) was subsequently evaluated against HCT‐116, HeLa, MDA‐MB‐231, and A549 cancer cell lines, as well as the normal cell line LO2, by MTT assays. The results indicated that CP‐1 displayed potent inhibitory effects against human colorectal cancer cells (HCT‐116) (IC50 = 0.03 ± 0.01) and human breast cancer cells (MDA‐MB‐231) (IC50 = 0.02 ± 0.01), significantly outperforming cisplatin. Moreover, CP‐2 exhibited notable selectivity towards MDA‐MB‐231 cells (IC50 = 5.01 ± 0.40) with minimal toxicity towards normal cells. Mechanistic studies revealed that treatment with CP 1–2 led to elevated intracellular reactive oxygen species (ROS) levels, resulting in cell cycle arrest at different phases. Specifically, CP‐1 induced G2/M phase arrest, inhibiting cancer cell proliferation, whereas CP‐2 hindered DNA synthesis (S phase) to impede cell proliferation. Furthermore, both CP‐1 and CP‐2 caused a reduction in mitochondrial membrane potential, activating the mitochondrial apoptotic pathway and inducing apoptosis in cancer cells. Molecular docking experiments demonstrated strong interactions between CP 1–2 and protein disulfide isomerase (PDI) at the molecular level. These findings suggest that CP‐1 and CP‐2 serve as potential anticancer agents, particularly showing promising potential in the treatment of breast cancer.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3