Multi‐cell‐line learning for the data‐driven construction of mechanistic metabolic models

Author:

Lu Yen‐An1ORCID,McCann Meghan G.1,Hu Wei‐Shou1ORCID,Zhang Qi1ORCID

Affiliation:

1. Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota USA

Abstract

AbstractMammalian cells are commonly used as hosts in cell culture for biologics production in the pharmaceutical industry. Structured mechanistic models of metabolism have been used to capture complex cellular mechanisms that contribute to varying metabolic shifts in different cell lines. However, little research has focused on the impact of temporal changes in enzyme abundance and activity on the modeling of cell metabolism. In this work, we present a framework for constructing mechanistic models of metabolism that integrate growth‐signaling control of enzyme activity and transcript dynamics. The proposed approach is applied to build models for three Chinese hamster ovary (CHO) cell lines using fed‐batch culture data and time‐series transcript profiles. Leveraging information from the transcriptome data, we develop a parameter estimation approach based on multi‐cell‐line (MCL) learning, which combines data sets from different cell lines and trains the individual cell‐line models jointly to improve model accuracy. The computational results demonstrate the important role of growth signaling and transcript variability in metabolic models as well as the virtue of the MCL approach for constructing cell‐line models with a limited amount of data. The resulting models exhibit a high level of accuracy in predicting distinct metabolic behaviors in the different cell lines; these models can potentially be used to accelerate the process and cell‐line development for the biomanufacturing of new protein therapeutics.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3