In vitro degradation, swelling, and bioactivity performances of in situ forming injectable chitosan‐matrixed hydrogels for bone regeneration and drug delivery

Author:

Kocak Fatma Zehra12ORCID,Yar Muhammad3,Rehman Ihtesham U.4

Affiliation:

1. Engineering‐Architecture Faculty, Metallurgy and Materials Engineering Nevsehir Haci Bektas Veli University Nevsehir Turkey

2. Engineering Department Lancaster University Lancaster UK

3. Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS University Islamabad, Lahore Campus Lahore Pakistan

4. School of Medicine and Dentistry University of Central Lancashire Lancashire UK

Abstract

AbstractInjectable, tissue mimetic, bioactive, and biodegradable hydrogels offer less invasive regeneration and repair of tissues. The monitoring swelling and in vitro degradation capacities of hydrogels are highly important for drug delivery and tissue regeneration processes. Bioactivity of bone tissue engineered constructs in terms of mineralized apatite formation capacity is also pivotal. We have previously reported in situ forming chitosan‐based injectable hydrogels integrated with hydroxyapatite and heparin for bone regeneration, promoting angiogenesis. These hydrogels were functionalized by glycerol and pH to improve their mechano‐structural properties. In the present study, functionalized hybrid hydrogels were investigated for their swelling, in vitro degradation, and bioactivity performances. Hydrogels have degraded gradually in phosphate‐buffered saline (PBS) with and without lysozyme enzyme. The percentage weight loss of hydrogels and their morphological and chemical properties, and pH of media were analyzed. The swelling ratio of hydrogels (55%–68%(wt), 6 h of equilibrium) indicated a high degree of cross‐linking, can be suitable for controlled drug release. Hydrogels have gradually degraded reaching to 60%–70% (wt%) in 42 days in the presence and absence of lysozyme, respectively. Simulated body fluid (SBF)‐treated hydrogels containing hydroxyapatite‐induced needle‐like carbonated‐apatite mineralization was further enhanced by heparin content significantly.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3