Characterization of an αL‐fucosidase in marine bacterium Wenyingzhuangia fucanilytica: new evidence on the catalytic sites of GH95 family glycosidases

Author:

Shen Jingjing1,Li Jiajing1,Zhang Yuying1,Mei Xuanwei1,Xue Changhu1,Chang Yaoguang1ORCID

Affiliation:

1. College of Food Science and Engineering Ocean University of China Qingdao China

Abstract

AbstractBackgroundαl‐Fucose confers unique functions for fucose‐containing biomolecules such as human milk oligosaccharides. αl‐Fucosidases can serve as desirable tools in the application of fucosylated saccharides. Discovering novel αl‐fucosidases and elucidating their enzyme properties are always worthy tasks.ResultsA GH95 family αl‐fucosidase named Afc95A_Wf was cloned from the genome of the marine bacterium Wenyingzhuangia fucanilytica and expressed in Escherichia coli. It exhibited maximum activity at 40 °C and pH 7.5. Afc95A_Wf defined a different substrate specificity among reported αl‐fucosidases, which was capable of hydrolyzing α‐fucoside in CNP‐fucose, Fucα1‐2Galβ1‐4Glc and Galβ1‐4(Fucα1‐3)Glc, and showed a preference for α1,2‐fucosidic linkage. It adopted Asp residue in the amino acid sequence at position 391, which was distinct from the previously acknowledged residue of Asn. The predicted tertiary structure and site‐directed mutagenesis revealed that Asp391 participates in the catalysis of Afc95A_Wf. The differences in the substrate specificity and catalytic site shed light on that Afc95A_Wf adopted a novel mechanism in catalysis.ConclusionA GH95 family αl‐fucosidase (Afc95A_Wf) was cloned and expressed. It showed a cleavage preference for α1,2‐fucosidic linkage to α1,3‐fucosidic linkage. Afc95A_Wf demonstrated a different substrate specificity and a residue at an important catalytic site compared with known GH95 family proteins, which revealed the occurrence of diversity on catalytic mechanisms in the GH95 family. © 2024 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3