Pre‐whitened matched filter and convolutional neural network based model observer performance for mass lesion detection in non‐contrast breast CT

Author:

Lyu Su Hyun12,Abbey Craig K.3,Hernandez Andrew M.2,Boone John M.12

Affiliation:

1. Department of Biomedical Engineering University of California Davis Davis California USA

2. Department of Radiology University of California Davis Sacramento California USA

3. Department of Psychological and Brain Sciences UC Santa Barbara Santa Barbara California USA

Abstract

AbstractBackgroundMathematical model observers have been shown to reasonably predict human observer performance and are useful when human observer studies are infeasible. Recently, convolutional neural networks (CNNs) have also been used as substitutes for human observers, and studies have shown their utility as an optimal observer. In this study, a CNN model observer is compared to the pre‐whitened matched filter (PWMF) model observer in detecting simulated mass lesions inserted into 253 acquired breast computed tomography (bCT) images from patients imaged at our institution.PurposeTo compare CNN and PWMF model observers for detecting signal‐known‐exactly (SKE) location‐known‐exactly (LKE) simulated lesions in bCT images with real anatomical backgrounds, and to use these model observers collectively to optimize parameters and understand trends in performance with breast CT.MethodsSpherical lesions with different diameters (1, 3, 5, 9 mm) were mathematically inserted into reconstructed patient bCT image data sets to mimic 3D mass lesions in the breast. 2D images were generated by extracting the center slice along the axial dimension or by slice averaging across adjacent slices to model thicker sections (0.4, 1.2, 2.0, 6.0, 12.4, 20.4 mm). The role of breast density was retrospectively studied using the range of breast densities intrinsic to the patient bCT data sets. In addition, mass lesions were mathematically inserted into Gaussian images matched to the mean and noise power spectrum of the bCT images to better understand the performance of the CNN in the context of a known ideal observer (the PWMF). The simulated Gaussian and bCT images were divided into training and testing data sets. Each training data set consisted of 91 600 images, and each testing data set consisted of 96 000 images. A CNN and PWMF was trained on the Gaussian training images, and a different CNN and PWMF was trained on the bCT training images. The trained model observers were tested, and receiver operating characteristic (ROC) curve analysis was used to evaluate detection performance. The area under the ROC curve (AUC) was the primary performance metric used to compare the model observers.ResultsIn the Gaussian background, the CNN performed essentially identically to the PWMF across lesion sizes and section thicknesses. In the bCT background, the CNN outperformed the PWMF across lesion size, breast density, and most section thicknesses. These findings suggest that there are higher‐order features in bCT images that are harnessed by the CNN observer but are inaccessible to the PWMF.ConclusionsThe CNN performed equivalently to the ideal observer in Gaussian textures. In bCT background, the CNN captures more diagnostic information than the PWMF and may be a more pertinent observer when conducting optimal performance studies in breast CT images.

Funder

National Cancer Institute

National Institute of Biomedical Imaging and Bioengineering

Publisher

Wiley

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3