The pathological risk score: A new deep learning‐based signature for predicting survival in cervical cancer

Author:

Chen Chi12,Cao Yuye3,Li Weili3,Liu Zhenyu24,Liu Ping3,Tian Xin3,Sun Caixia12,Wang Wuliang5,Gao Han12,Kang Shan6,Wang Shaoguang7,Jiang Jingying18,Chen Chunlin3ORCID,Tian Jie12ORCID

Affiliation:

1. Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine, School of Medicine and Engineering Beihang University Beijing China

2. CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems Institute of Automation, Chinese Academy of Sciences Beijing China

3. Department of Obstetrics and Gynecology Nanfang Hospital, Southern Medical University Guangzhou China

4. School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China

5. Department of Obstetrics and Gynecology The Second Affiliated Hospital of He' nan Medical University Zhengzhou China

6. Department of Gynecology Fourth Hospital Hebei Medical University Shijiazhuang China

7. Department of Gynecology Yantai Yuhuangding Hospital Yantai China

8. Key Laboratory of Big Data‐Based Precision Medicine (Beihang University) Ministry of Industry and Information Technology Beijing China

Funder

Guangzhou Municipal Science and Technology Bureau

National Natural Science Foundation of China

National Science and Technology Program during the Twelfth Five-year Plan Period

Natural Science Foundation of Beijing Municipality

Natural Science Foundation of Guangdong Province

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Wiley

Subject

Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology

Reference37 articles.

1. World Health Organization. International Agency for Research on Cancer.2020.

2. Cancer of the cervix uteri

3. Guidelines for the Treatment of Recurrent and Metastatic Cervical Cancer

4. A microRNA expression signature for cervical cancer prognosis;Hu X;J Cell Biochem,2010

5. Tumor–stroma ratio is an independent predictor for survival in early cervical carcinoma

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3