A systematic review of multidimensional relevance estimation in information retrieval

Author:

Peikos Georgios1ORCID,Pasi Gabriella1ORCID

Affiliation:

1. Department of Informatics, Systems and Communication University of Milano‐Bicocca Milan Italy

Abstract

AbstractIn information retrieval, relevance is perceived as a multidimensional and dynamic concept influenced by user, task, and domain factors. Relying on this perspective, researchers have introduced multidimensional relevance models addressing diverse search tasks across numerous knowledge domains. Through our systematic review of 72 studies, we categorize research based on domain specificity and the distinct relevance aspects employed for estimating multidimensional relevance. Moreover, we highlight the approaches used to aggregate scores related to these factors and rank information items. Our insights underline the importance of concise definitions and unified methods for estimating relevance factors within and across domains. Finally, we identify benchmark collections for evaluations based on multiple relevance aspects while underscoring the necessity for new ones. Our findings suggest that large language models hold considerable promise for shaping future research in this field, mainly due to their relevance labeling abilities.This article is categorized under: Application Areas > Science and Technology Technologies > Computational Intelligence

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3