Seismic behavior of reduced beam section joints considering concrete floor effect

Author:

Lu Shengcan1,Luo Liang2,Han Xiangxi3,Liu Anqi4

Affiliation:

1. School of Civil Engineering and Architecture Wuyi University Jiangmen China

2. Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education Harbin Institute of Technology Harbin China

3. Key Laboratory of Beibu Gulf Offshore Engineering Equipment and Technology, Education Department of Guangxi Zhuang Autonomous Region Beibu Gulf University Qinzhou Guangxi China

4. Minzhi Subdistrict Office of Longhua District Shenzhen China

Abstract

SummaryThis study investigates the seismic impact of concrete floors on reduced beam section beam‐to‐column joints through four quasi‐static cyclic tests. We examine mechanical properties, failure modes, and processes against specific criteria. Additionally, we analyze hysteretic response, energy dissipation, stiffness, capacity, and stress–strain mechanisms. Moreover, the ABAQUS platform was used to reproduce the specimen nonlinear finite element model to compare and analyze the test results. The results showed that the specimens exhibit excellent energy dissipation capacity and ductility (with a coefficient of 5.00); the column‐bar connection characteristics affect the maximum capacity and plastic hinge behavior in the reduced beam area. The reduced section of beam's upper flange could not improve the overall seismic performance of the joint. The observed failure sequence is as follows: concrete floor cracking, beam flange yielding, reinforcement fracture, lower flange yielding in the reduced beam area, and overall joint failure. This sequence confirms that the joint fulfills the design criteria of a “strong column‐weak beam” by achieving the target of plastic hinge outward movement.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3