Towards a new generation of artificial‐intelligence‐based infrared atmospheric sounding interferometer retrievals of surface temperature: Part II – Assessment

Author:

Boucher Eulalie1ORCID,Aires Filipe1ORCID

Affiliation:

1. LERMA Observatoire de Paris, CNRS Paris France

Abstract

AbstractWhen using neural networks (NNs), the lack of input information characterizing the radiative transfer can result in regional biases, especially when retrieving surface properties. In the Part I companion article we explored localization techniques in an attempt to help the NN adjust its behaviour to local conditions. In this article we analyze results from an image‐processing approach, the novel localized convolutional NN (CNN) model for the retrieval of surface temperature (TS) over a fixed domain using infrared atmospheric sounding interferometer (IASI) observations. An in‐depth evaluation is performed. The localized‐CNN architecture is a promising artificial intelligence solution that provides retrievals similar to, if not better than, those of the European Organisation for the Exploitation of Meteorological Satellites' PWLR3 retrieval algorithm that also uses IASI observations, collocated with microwave data too. This shows the benefits of localizing the CNN retrieval. This image‐processing retrieval scheme allows interpolation of the TS below the clouds, and thus a preliminary analysis of the cloud impact on the TS is performed. The possibility to estimate retrieval uncertainties is investigated, and a practical solution, based on the binning of the input space, is proposed for CNN architectures. The best strategy for a global‐scale retrieval is yet to be found for such an image‐processing scheme, but potential solutions and their respective advantages and disadvantages are discussed.

Funder

Thales Group

Publisher

Wiley

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3