Atomically dispersed Mn–Nx catalysts derived from Mn‐hexamine coordination frameworks for oxygen reduction reaction

Author:

Zhong Guoyu1,Zou Liuyong1,Chi Xiao23,Meng Zhen1,Chen Zehong2,Li Tingzhen2,Huang Yongfa2,Fu Xiaobo1,Liao Wenbo1,Zheng Shaona1,Xu Yongjun1,Peng Feng4,Peng Xinwen2ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Distributed Energy Systems School of Chemical Engineering and Energy Technology, Dongguan University of Technology Dongguan China

2. State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China

3. Department of Chemistry Centre for Advanced 2D Materials (CA2DM), National University of Singapore Singapore Singapore

4. School of Chemistry and Chemical Engineering Guangzhou University Guangzhou China

Abstract

AbstractMetal‐organic frameworks recently have been burgeoning and used as precursors to obtain various metal–nitrogen–carbon catalysts for oxygen reduction reaction (ORR). Although rarely studied, Mn–N–C is a promising catalyst for ORR due to its weak Fenton reaction activity and strong graphitization catalysis. Here, we developed a facile strategy for anchoring the atomically dispersed nitrogen‐coordinated single Mn sites on carbon nanosheets (MnNCS) from an Mn‐hexamine coordination framework. The atomically dispersed Mn–N4 sites were dispersed on ultrathin carbon nanosheets with a hierarchically porous structure. The optimized MnNCS displayed an excellent ORR performance in half‐cells (0.89 V vs. reversible hydrogen electrode (RHE) in base and 0.76 V vs. RHE in acid in half‐wave potential) and Zn–air batteries (233 mW cm−2 in peak power density), along with significantly enhanced stability. Density functional theory calculations further corroborated that the Mn–N4–C12 site has favorable adsorption of *OH as the rate‐determining step. These findings demonstrate that the metal‐hexamine coordination framework can be used as a model system for the rational design of highly active atomic metal catalysts for energy applications.

Funder

State Key Laboratory of Pulp and Paper Engineering

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3