Selective photosynthesis of Z‐olefins through crystalline metal–organic cage‐initiated expeditious cascade reactions

Author:

Lu Jia‐Ni1,Huang Yunze1,Xia Yuan‐Sheng1,Dong Long‐Zhang2,Zhang Lei2,Liu Jing‐Jing2,Xie Lan‐Gui1,Liu Jiang12,Lan Ya‐Qian12ORCID

Affiliation:

1. Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Nanjing Normal University Nanjing China

2. School of Chemistry South China Normal University Guangzhou China

Abstract

AbstractThe semi‐hydrogenation of alkyne to form Z‐olefins with high conversion and high selectivity is still a huge challenge in the chemical industry. Moreover, flammable and explosive hydrogen as the common hydrogen source of this reaction increases the cost and danger of industrial production. Herein, we connect the photocatalytic hydrogen evolution reaction and the semi‐hydrogenation reaction of alkynes in series and successfully realize the high selective production of Z‐alkenes using low‐cost, safe, and green water as the proton source. Before the cascade reaction, a series of isomorphic metal–organic cage catalysts (CoxZn8−xL6, x = 0, 3, 4, 5, and 8) are designed and synthesized to improve the yield of the photocatalytic hydrogen production. Among them, Co5Zn3L6 shows the highest photocatalytic activity, with a H2 generation rate of 8.81 mmol g−1 h−1. Then, Co5Zn3L6 is further applied in the above tandem reaction to efficiently reduce alkynes to Z‐alkenes under ambient conditions, which can reach high conversion of >98% and high selectivity of >99%, and maintain original catalytic activity after multiple cycles. This “one‐pot” tandem reaction can achieve a highly selective and safe stepwise conversion from water into hydrogen into Z‐olefins under mild reaction conditions.

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3