Affiliation:
1. Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Nanjing Normal University Nanjing China
2. School of Chemistry South China Normal University Guangzhou China
Abstract
AbstractThe semi‐hydrogenation of alkyne to form Z‐olefins with high conversion and high selectivity is still a huge challenge in the chemical industry. Moreover, flammable and explosive hydrogen as the common hydrogen source of this reaction increases the cost and danger of industrial production. Herein, we connect the photocatalytic hydrogen evolution reaction and the semi‐hydrogenation reaction of alkynes in series and successfully realize the high selective production of Z‐alkenes using low‐cost, safe, and green water as the proton source. Before the cascade reaction, a series of isomorphic metal–organic cage catalysts (CoxZn8−xL6, x = 0, 3, 4, 5, and 8) are designed and synthesized to improve the yield of the photocatalytic hydrogen production. Among them, Co5Zn3L6 shows the highest photocatalytic activity, with a H2 generation rate of 8.81 mmol g−1 h−1. Then, Co5Zn3L6 is further applied in the above tandem reaction to efficiently reduce alkynes to Z‐alkenes under ambient conditions, which can reach high conversion of >98% and high selectivity of >99%, and maintain original catalytic activity after multiple cycles. This “one‐pot” tandem reaction can achieve a highly selective and safe stepwise conversion from water into hydrogen into Z‐olefins under mild reaction conditions.
Subject
Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献