Population genetic differentiation and phenotypic plasticity of Ambrosiaartemisiifolia under different nitrogen levels

Author:

Xiong Yunqi12,Oduor Ayub M. O.34ORCID,Zhao Caiyun1ORCID

Affiliation:

1. State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences Beijing China

2. College of Life Sciences University of Chinese Academy of Sciences Beijing China

3. Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou China

4. Department of Applied Biology Technical University of Kenya Nairobi Kenya

Abstract

AbstractRapid adaptive evolution and phenotypic plasticity are two mechanisms that often underlie invasiveness of alien plant species, but whether they can co‐occur within invasive plant populations under altered environmental conditions such as nitrogen (N) enrichment has seldom been explored. Latitudinal clines in plant trait responses to variation in environmental factors may provide evidence of local adaptation. Here, we inferred the relative contributions of phenotypic plasticity and local adaptation to the performance of the invasive plant Ambrosia artemisiifolia under different soil N levels, using a common garden approach. We grew A. artemisiifolia individuals raised from seeds that were sampled from six invasive populations along a wide latitudinal cline in China (23°42′ N to 45°43′ N) under three N (0, 5, and 10 g N m−2) levels in a common garden. Results show significant interpopulation genetic differentiation in plant height, number of branches, total biomass, and transpiration rate of the invader A. artemisiifolia across the N treatments. The populations also expressed genetic differentiation in basal diameter, growth rate, leaf area, seed width, root biomass, aboveground biomass, stomatal conductance, and intercellular CO2 concentration regardless of N treatments. Moreover, plants from different populations of the invader displayed plastic responses in time to first flower, hundred‐grain weight, net photosynthetic rate, and relative biomass allocation to roots and shoots and seed length under different N treatments. Additionally, individuals of A. artemisiifolia from higher latitudes grew shorter and allocated less biomass to the roots regardless of N treatment, while latitudinal cline (or lack thereof) in other traits depended on the level of N in which the plants were grown. Overall, these results suggest that rapid adaptive evolution and phenotypic plasticity in the various traits that we quantified may jointly contribute to invasiveness of A. artemisiifolia under different levels of N availability. More broadly, the results support the idea that phenotypic plasticity and rapid adaptive evolution can jointly enable invasive plants to colonize a wide range of environmental conditions.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3