A novel block‐coordinate gradient descent algorithm for simultaneous grouped selection of fixed and random effects in joint modeling

Author:

Chen Shuyan1ORCID,Fang Zhiqing2,Li Zhong3,Liu Xin2ORCID

Affiliation:

1. School of Management University of Science and Technology of China Anhui China

2. School of Statistics and Management Shanghai University of Finance and Economics Shanghai China

3. School of Insurance and Economics University of International Business and Economics Beijing China

Abstract

Joint models for longitudinal and time‐to‐event data are receiving increasing attention owing to its capability of capturing the possible association between these two types of data. Typically, a joint model consists of a longitudinal submodel for longitudinal processes and a survival submodel for the time‐to‐event response, and links two submodels by common covariates that may carry both fixed and random effects. However, research gaps still remain on how to simultaneously select fixed and random effects from the two submodels under the joint modeling framework efficiently and effectively. In this article, we propose a novel block‐coordinate gradient descent (BCGD) algorithm to simultaneously select multiple longitudinal covariates that may carry fixed and random effects in the joint model. Specifically, for the multiple longitudinal processes, a linear mixed effect model is adopted where random intercepts and slopes serve as essential covariates of the trajectories, and for the survival submodel, the popular proportional hazard model is employed. A penalized likelihood estimation is used to control the dimensionality of covariates in the joint model and estimate the unknown parameters, especially when estimating the covariance matrix of random effects. The proposed BCGD method can successfully capture the useful covariates of both fixed and random effects with excellent selection power, and efficiently provide a relatively accurate estimate of fixed and random effects empirically. The simulation results show excellent performance of the proposed method and support its effectiveness. The proposed BCGD method is further applied on two real data sets, and we examine the risk factors for the effects of different heart valves, differing on type of tissue, implanted in the aortic position and the risk factors for the diagnosis of primary biliary cholangitis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3