Polydopamine surface modified Ti3C2Tx/PLA biocomposites with enhanced mechanical, thermal, and tribological properties

Author:

Khan Fazal Maula1ORCID,Sun Mingchen1,Liu Zhiwei1,Li Guanlong1,Bhagat Waheed Ali2,Wang Kai1ORCID,Zhao Yan1ORCID

Affiliation:

1. School of Materials Science and Engineering Beihang University Beijing China

2. School of Space and Environment Beihang University Beijing China

Abstract

AbstractThe industry desires to create robust, resilient, thermally stable, and environmentally friendly composites. In this study, we created a poly (lactic acid) (PLA) composite via a straightforward method. The Ti3C2TX was surface‐coated with polydopamine (PDA) via a bioinspired approach and was then reinforced in the PLA using melt blending. The PDA layer adorned on the Ti3C2TX provided several functional groups for the MXene nanosheets and strengthened the PLA‐MXene interaction by hydrogen bonding. The well‐dispersed PDA@Ti3C2TX in the PLA improved mechanical, thermal, and tribological properties. For PLA/PDA@Ti3C2TX‐1, the tensile strength and elongation at the break of the nano‐composite were 9.03% and 25.5% higher than pure PLA, respectively. The flexural strength and modulus were increased by 49.5% over pure PLA, reaching 148.8 and 6702 MPa, respectively. The nanocomposite toughness increased by up to 53.3%. The nanocomposites had 3.8% and 49.08% lower friction coefficient and specific wear rate, respectively, than pure PLA. The addition of Ti3C2TX and PDA@Ti3C2TX increased the thermal stability of PLA at lower temperatures and promoted carbonization. PLA/PDA@Ti3C2TX‐1 showed the maximum char yield of 10 wt.% at 800°C, proving the highest thermal barrier effect due to MXene exfoliation during PDA and increased PLA dispersion state.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3