Paired acoustic recordings and point count surveys reveal Clark's nutcracker and whitebark pine associations across Glacier National Park

Author:

Kovalenko Vladimir12,Doser Jeffrey W.3ORCID,Bate Lisa J.2,Six Diana L.1

Affiliation:

1. Department of Ecosystem and Conservation Sciences University of Montana Missoula Montana USA

2. Science Center Glacier National Park West Glacier Montana USA

3. Department of Integrative Biology, Ecology, Evolution and Behavior Program Michigan State University East Lansing Michigan USA

Abstract

AbstractGlobal declines in tree populations have led to dramatic shifts in forest ecosystem composition, biodiversity, and functioning. These changes have consequences for both forest plant and wildlife communities, particularly when declining species are involved in coevolved mutualisms. Whitebark pine (Pinus albicaulis) is a declining keystone species in western North American high‐elevation ecosystems and an obligate mutualist of Clark's nutcracker (Nucifraga columbiana), an avian seed predator and disperser. By leveraging traditional point count surveys and passive acoustic monitoring, we investigated how stand characteristics of whitebark pine in a protected area (Glacier National Park, Montana, USA) influenced occupancy and vocal activity patterns in Clark's nutcracker. Using Bayesian spatial occupancy models and generalized linear mixed models, we found that habitat use of Clark's nutcracker was primarily supported by greater cone density and increasing diameter of live whitebark pine. Additionally, we demonstrated the value of performing parallel analyses with traditional point count surveys and passive acoustic monitoring to provide multiple lines of evidence for relationships between Clark's nutcracker and whitebark pine forest characteristics. Our findings allow managers to gauge the whitebark pine conditions important for retaining high nutcracker visitation and prioritize management efforts in whitebark pine ecosystems with low nutcracker visitation.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3