Instrumental variable model average with applications in Mendelian randomization

Author:

Seng Loraine Liping12ORCID,Liu Ching‐Ti34ORCID,Wang Jingli5ORCID,Li Jialiang12ORCID

Affiliation:

1. Department of Statistics and Data Science National University of Singapore Singapore

2. Duke‐NUS Graduate Medical School National University of Singapore Singapore

3. Department of Biostatistics Boston University School of Public Health Boston Massachusetts USA

4. Department of Statistics National Cheng Kung University Tainan Taiwan

5. School of Statistics and Data Science Nankai University China

Abstract

Mendelian randomization is a technique used to examine the causal effect of a modifiable exposure on a trait using an observational study by utilizing genetic variants. The use of many instruments can help to improve the estimation precision but may suffer bias when the instruments are weakly associated with the exposure. To overcome the difficulty of high‐dimensionality, we propose a model average estimator which involves using different subsets of instruments (single nucleotide polymorphisms, SNPs) to predict the exposure in the first stage, followed by weighting the submodels' predictions using penalization by common penalty functions such as least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD) and minimax concave penalty (MCP). The model averaged predictions are then used as a genetically predicted exposure to obtain the estimation of the causal effect on the response in the second stage. The novelty of our model average estimator also lies in that it allows the number of submodels and the submodels' sizes to grow with the sample size. The practical performance of the estimator is examined in a series of numerical studies. We apply the proposed method on a real genetic dataset investigating the relationship between stature and blood pressure.

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3