Fluid migration along deep‐crustal shear zone: A case study of the Rhenosterkoppies Greenstone Belt in the northern Kaapvaal Craton, South Africa

Author:

Koizumi Tatsuya1,Tsunogae Toshiaki23ORCID,van Reenen Dirk D.3,Smit C. A.3,Belyanin Georgy A.3

Affiliation:

1. Graduate School of Life and Environmental Sciences University of Tsukuba Ibaraki Japan

2. Faculty of Life and Environmental Sciences University of Tsukuba Ibaraki Japan

3. Department of Geology University of Johannesburg Auckland Park Republic of South Africa

Abstract

The north‐dipping Hout River Shear Zone (HRSZ), which marks the boundary between the high‐grade Limpopo Complex in its hanging wall and the low‐grade granite‐greenstone terrane of the Kaapvaal Craton in South Africa in its footwall, is a deep‐crustal shear zone that controlled emplacement of hot Limpopo Complex granulites over and against low‐grade granite‐greenstones during exhumation at ~2.72–2.62 Ga. This major shear zone controlled migration of large volumes of hydrous fluids released during devolatilization of underthrusted greenstones that infiltrated into hot overlying granulites, establishing a retrograde anthophyllite‐in isograd and associated zone of retrograde rehydrated granulite that bounds the Limpopo Complex in the south. Here, we report new petrological data based on mineral equilibrium modelling of amphibolites from the Rhenosterkoppies Greenstone Belt (RGB) located in the immediate footwall of the HRSZ and discuss evidence that these rocks also interacted with high‐temperature fluids that infiltrated along the HRSZ. This study provides an important perspective of the interaction of hot granulites with underthrusted relatively cold greenschist‐facies rocks along the steeply north‐dipping section of the HRSZ, and shows that evidence for such interaction is restricted to a relatively narrow zone in the footwall of the HRSZ termed a hot‐iron‐zone. The peak mineral assemblage of a garnet‐free amphibolite from the RGB (magnesio‐hornblende + plagioclase + quartz + clinopyroxene + titanite + ilmenite) yielded the peak PT condition of 7–8 kbar and 640–680°C with H2O content of 3.5–3.8 mol%. Clinopyroxene is replaced by actinolite + quartz and epidote + quartz symplectites by a post‐peak hydration event at <5 kbar and <590°C caused by elevated H2O content in the rock (>4.0 mol%), possibly related to fluid infiltration along the HRSZ. Mineral equilibria in a garnet‐bearing amphibolite records a prograde path from 5 to 7 kbar and 540–630°C to the peak conditions at 7.6–8.7 kbar and 620–650°C. A clockwise PT path suggesting rapid compression and decompression has been inferred for the amphibolites from the RGB, possibly because of pressure increase related to overthrusting of the high‐grade terrane (Southern Marginal Zone of the Limpopo Complex) onto the low‐grade granite‐greenstone terrane, followed by rapid exhumation. The quantity of H2O associated with the amphibolite‐facies metamorphism in the RGB was elevated from the peak stage (M(H2O) = 3.5–3.8 mol%) to the retrograde stage (M(H2O) = 4.0–4.5 mol%) of metamorphism in the RGB, possibly suggesting fluid infiltration not only from internal sources but also from external sources. The results of this study indicate that a H2O‐bearing fluid, which infiltrated along the HRSZ, affected both the footwall and the hanging wall sections of the shear zone, although the effect on the footwall section was limited.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3