Clinical classification of memory and cognitive impairment with multimodal digital biomarkers

Author:

Banks Russell1ORCID,Higgins Connor2,Greene Barry R.3,Jannati Ali4,Gomes‐Osman Joyce5,Tobyne Sean2,Bates David2,Pascual‐Leone Alvaro246

Affiliation:

1. Department of Communicative Sciences & Disorders College of Arts & Sciences Michigan State University East Lansing Michigan USA

2. Linus Health Boston Massachusetts USA

3. Linus Health Europe Dublin Ireland

4. Department of Neurology Harvard Medical School Boston Massachusetts USA

5. Department of Neurology University of Miami Miller School of Medicine Miami Florida USA

6. Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health Hebrew SeniorLife Boston Massachusetts USA

Abstract

AbstractINTRODUCTIONEarly detection of Alzheimer's disease and cognitive impairment is critical to improving the healthcare trajectories of aging adults, enabling early intervention and potential prevention of decline.METHODSTo evaluate multi‐modal feature sets for assessing memory and cognitive impairment, feature selection and subsequent logistic regressions were used to identify the most salient features in classifying Rey Auditory Verbal Learning Test‐determined memory impairment.RESULTSMultimodal models incorporating graphomotor, memory, and speech and voice features provided the stronger classification performance (area under the curve = 0.83; sensitivity = 0.81, specificity = 0.80). Multimodal models were superior to all other single modality and demographics models.DISCUSSIONThe current research contributes to the prevailing multimodal profile of those with cognitive impairment, suggesting that it is associated with slower speech with a particular effect on the duration, frequency, and percentage of pauses compared to normal healthy speech.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3