Design strategies and recent advancements of solid‐state supercapacitor operating in wide temperature range

Author:

Zhou Jie1,Zhu Zhengfeng1,Shi Wenhui1,Shi Xiangyu1,Zheng Zhuoyuan1,Xiong Ye2,Zhu Yusong12ORCID

Affiliation:

1. School of Energy Science and Engineering Nanjing Tech University Nanjing Jiangsu China

2. Kucap Smart Technology (Nanjing) Co., Ltd. Nanjing Jiangsu China

Abstract

AbstractSolid‐state supercapacitors (SSCs) are emerging as one of the promising energy storage devices due to their high safety, superior power density, and excellent cycling life. However, performance degradation and safety issues under extreme conditions are the main challenges for the practical application. With the expansion of human activities, such as space missions, polar exploration, and so on, the investigation of SSC with wide temperature tolerance, high energy density, power density, and sustainability is highly desired. In this review, the effects of temperature on SSC are systematically illustrated and clarified, including the properties of the electrolyte, ion diffusion, and reaction dynamics of the supercapacitor. Subsequently, we summarize the recent advances in wide‐temperature‐range SSCs from the aspect of electrolyte modification, electrode design, and interface adjustment between electrode and electrolyte, especially with critical concerns on ionic conductivity and cycling stability. In the end, a perspective is presented, expecting to promote the practical application of the SSC in harsh conditions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3