Enhancing bioelectricity generation from wastewater in microbial fuel cells using carbon nanomaterials

Author:

Attia Yasser A1ORCID,Samer Mohamed2ORCID,Mohamed Mahmoud SM3,Salah Mohamed1,Moustafa Elshaimaa2,Hameed R M Abdel4,Elsayed Hassan5,Abdelsalam Essam M1

Affiliation:

1. National Institute of Laser Enhanced Sciences (NILES) Cairo University Giza Egypt

2. Department of Agricultural Engineering, Faculty of Agriculture Cairo University Giza Egypt

3. Department of Botany and Microbiology, Faculty of Science Cairo University Giza Egypt

4. Department of Chemistry, Faculty of Science Cairo University Giza Egypt

5. Department of Microbial Biotechnology Biotechnology Research Institute, National Research Centre Giza Egypt

Abstract

AbstractBACKGROUNDMicrobial fuel cells (MFCs) offer a promising approach for treating wastewater and generating electrical energy simultaneously. However, their implementation in wastewater treatment plants is hindered by the limited electricity generation, often attributed to the electrolyte's high resistance. This study aimed to improve bioelectricity generation in MFCs by adding nanomaterials to the electrolyte to enhance conductivity.RESULTSThree types of nanomaterials – carbon nanotubes (CNTs), graphitic carbon nitride (g‐C3N4), and reduced graphene oxide (r‐GO) – were synthesized and addition to the electrolyte at a concentration of 50 mg in 1.5 L. MFC performance was evaluated, employed a hydraulic retention time (HRT) of 140 h, and compared to a control with no nanomaterials added. The addition of nanomaterials significantly improved MFC performance. Compared to the control, the MFCs with CNTs, g‐C3N4, and r‐GO exhibited higher voltage: 1.301 V (CNTs), 1.286 V (g‐C3N4), 1.280 V (r‐GO) versus 0.570 V (control); increased power density: 14.11 mW m−3 (CNTs), 13.78 mW m−3 (g‐C3N4), 13.66 mW m−3 (r‐GO) versus 2.71 mW m−3 (control); enhanced areal power density: 21.06 mW m−2 (CNTs), 20.57 mW m−2 (g‐C3N4), 20.39 mW m−2 (r‐GO) versus 4.04 mW m−2 (control); and improved coulombic efficiency: 19.43% (CNTs), 19.19% (g‐C3N4), 19.11% (r‐GO) versus 8.54% (control).CONCLUSIONIncorporating nanomaterials into the MFC electrolyte significantly increased bioelectricity generation by 5.21 times and coulombic efficiency by 2.28 times compared to the control. This improvement is attributed to the high specific surface area of the nanomaterials, which facilitates the adhesion and growth of microorganisms around the anode, enhancing direct electron transfer. © 2024 Society of Chemical Industry (SCI).

Funder

Cairo University

Publisher

Wiley

Reference54 articles.

1. A novel small scale Microbial Fuel Cell design for increased electricity generation and waste water treatment

2. Microbial Fuel Cells for Wastewater Treatment

3. KarmakarS KunduKandKunduS Design and development of microbial fuel cells in Current Research Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (ed. A. Mendez‐Vilas) 1029–1034 (Formatex Research Center)(2010).

4. General aspects and novel PEMss in microbial fuel cell technology: A review

5. Nanocomposite membrane and microbial community analysis for improved performance in microbial fuel cell

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3