Tetrabutylammonium bromide/triethanolamine deep eutectic solvents with double hydrogen bond as efficient catalysts for fixation of CO2 in cyclic carbonates under mild conditions

Author:

Yang Hansen1,Wang Zhimiao12,Yang Qiusheng123,Li Fang12ORCID,Xue Wei12,Zhao Xinqiang12ORCID,Wang Yanji123

Affiliation:

1. Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology Hebei University of Technology Tianjin China

2. Tianjin Key Laboratory of Chemical Process Safety Tianjin China

3. Hebei Industrial Technology Research Institute of Green Chemical Industry Huanghua China

Abstract

AbstractBACKGROUNDCarbon dioxide is not only a major greenhouse gas but also an important carbon resource, which is abundant, renewable, low cost and non‐toxic. The coupling reaction of CO2 with epoxides has shown great potential in the field of chemical carbon fixation due to its 100% atomic utilization efficiency. Deep eutectic solvents (DESs) based on tetrabutylammonium bromide (TBAB) were evaluated for cycloaddition reaction of CO2 with propylene oxide (PO) to propylene carbonate (PC). Density functional theory (DFT) was used to calculate the catalytic performance of DES in CO2 cycloaddition reaction.RESULTSThe utilization of DES containing triethanolamine (TEA) as hydrogen bond donor significantly shortened the reaction time. Under optimal reaction conditions (30 mmol PO, 5 mol% TBAB/TEA (1:1) DES, 1.0 MPa CO2, 90 °C, 2 h), high PC yield (98%) was obtained. DFT calculations revealed that TBAB/TEA (1:1) DES was used as the catalyst for the coupling reaction between PO and CO2, with the ring‐opening process serving as the rate‐determining step and energy barrier of 17.9 kcal mol−1. TBAB/TEA (1:1) DES exhibited excellent recyclability and could be reused more than five times.CONCLUSIONTBAB/TEA (1:1) DES is a highly efficient homogeneous catalyst for the synthesis of cyclic carbonates through the cycloaddition reaction of CO2 and epoxides. The synergistic catalytic effect of the double hydrogen bonds between DES and Br anions is the reason for its high efficiency. © 2023 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Pollution,Waste Management and Disposal,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3