Adaptive formation control architectures for a team of quadrotors with multiple performance and safety constraints

Author:

Hu Zhongjun1,Jin Xu1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering University of Kentucky Lexington Kentucky USA

Abstract

AbstractIn this work, we propose a novel adaptive formation control architecture for a group of quadrotor systems, under line‐of‐sight (LOS) distance and relative distance constraints as well as attitude constraints, where the constraint requirements can be both asymmetric and time‐varying in nature. The LOS distance constraint consideration ensures that each quadrotor is not deviating too far away from its desired flight trajectory. The LOS relative inter‐quadrotor distance constraint is to guarantee that the LOS distance between any two quadrotors in the formation is neither too large (which may result in the loss of communication between quadrotors, for example) nor too small (which may result in collision between quadrotors, for example). The attitude constraints make sure that the roll, pitch, and yaw angles of each quadrotor do not deviate too much from the desired profile. Universal barrier functions are adopted in the controller design and analysis, which is a generic framework that can address system with different types of constraints in a unified controller architecture. Furthermore, each quadrotor's mass and inertia are unknown, and the system dynamics are subjected to time‐varying external disturbances. Through rigorous analysis, an exponential convergence rate can be guaranteed on the distance and attitude tracking errors, while all constraints are satisfied during the operation. A simulation example further demonstrates the efficacy of the proposed control framework.

Funder

National Science Foundation of Sri Lanka

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering,Biomedical Engineering,General Chemical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3