Design and performance evaluation of a slit‐slat camera for 2D prompt gamma imaging in proton therapy monitoring: A Monte Carlo simulation study

Author:

Malekzadeh Etesam1,Rajabi Hossein1,Tajik‐Mansoury Mohammad Ali2,Sabouri Pouya3,Fiorina Elisa45,Kalantari Faraz3

Affiliation:

1. Department of Medical Physics, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran

2. Biomedical Engineering and Medical Physics Department, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran

3. Department of Radiation Oncology University of Arkansas for Medical Sciences Little Rock Arkansas USA

4. National Institute of Nuclear Physics INFN, Section of Torino Torino Italy

5. Clinical Department, Fondazione CNAO Pavia Italy

Abstract

AbstractPurposeWe investigated the design of a prompt gamma camera for real‐time dose delivery verification and the partial mitigation of range uncertainties.MethodsA slit slat (SS) camera was optimized using the trade‐off between the signal‐to‐noise ratio and spatial resolution. Then, using the GATE Monte Carlo package, the camera performances were estimated by means of target shifts, beam position quantification, changing the camera distance from the beam, and air cavity inserting. A homogeneous PMMA phantom and the air gaps induced PMMA phantom were used. The air gaps ranged from 5 mm to 30 mm by 5 mm increments were positioned in the middle of the beam range. To reduce the simulation time, phase space scoring was used. The batch method with five realizations was used for stochastic error calculations.ResultsThe system's detection efficiency was PGs/proton) for a 10 × 20 cm2 detector (source‐to‐collimator distance = 15.0 cm). Axial and transaxial resolutions were 23 mm and 18 mm, respectively. The SS camera estimated the range as 69.0 ± 3.4 (relative stochastic error 1‐sigma is 5%) and 67.6 ± 1.8 mm (2.6%) for the real range of 67.0 mm for 107 and 108 protons of 100 MeV, respectively. Considering 160 MeV, these values are 155.5 ± 3.1 (2%) and 152.2 ± 2.0 mm (1.3%) for the real range of 152.0 mm for 107 and 108 protons, respectively. Considering phantom shift, for a 100 MeV beam, the precision of the quantification (1‐sigma) in the axial and lateral phantom shift estimation is 2.6 mm and 1 mm, respectively. Accordingly, the axial and lateral quantification precisions were 1.3 mm and 1 mm for a 160 MeV beam, respectively. Furthermore, the quantification of an air gap formulated as , where and gapreal are the estimated and real air gap, respectively. The precision of the air gap quantification is 1.6 mm (1 sigma). Moreover, 2D PG images show the trajectory of the proton beam through the phantom.ConclusionThe proposed slit‐slat imaging systems can potentially provide a real‐time, in‐vivo, and non‐invasive treatment monitoring method for proton therapy.

Publisher

Wiley

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3