Multiscale modeling of granular dynamics on flowslide triggering and runout

Author:

Yang Ming1ORCID,Buscarnera Giuseppe1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering Northwestern University Evanston Illinois USA

Abstract

AbstractA hierarchical multiscale modeling framework is proposed to simulate flowslide triggering and runout. It couples a system‐scale sliding‐consolidation model (SCM) resolving hydro‐mechanical feedbacks within a flowslide with a local‐scale solver based on the discrete element method (DEM) replicating the sand deformation response in the liquefied regime. This coupling allows for the simulation of a seamless transition from solid‐ to fluid‐like behavior following liquefaction, which is controlled by the grain‐scale dynamics. To investigate the role of grain‐scale interactions, the DEM simulations replace the constitutive model within the SCM framework, enabling the capture of the emergent rate‐dependent behavior of the sand during the inertial regime of motion. For this purpose, a novel algorithm is proposed to ensure the accurate passage of the strain rate from the global analysis to the local DEM solver under both quasi‐static (pre‐triggering) and dynamic (post‐triggering) regimes of motion. Our findings demonstrate that the specifics of the coupling algorithm do not bear significant consequences to the triggering analysis, in that the grain‐scale dynamics is negligible. By contrast, major differences between the results obtained with traditional algorithms and the proposed algorithm are found for the post‐triggering stage. Specifically, the existing algorithms suffer from loss of convergence and require proper numerical treatment to capture the micro‐inertial effects arising from the post‐liquefaction particle agitation responsible for viscous‐like effects that spontaneously regulate the flowslide velocity. These findings emphasize the important role of rate‐dependent feedback for the analysis of natural hazards involving granular materials, especially for post‐failure propagation analysis.

Funder

National Science Foundation

American Chemical Society Petroleum Research Fund

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3