Affiliation:
1. Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science China Agricultural University Beijing China
2. Department of Entomology and MOA Key Laboratory for Monitoring and Environment‐Friendly Control of Crop Pests, College of Plant Protection China Agricultural University Beijing China
3. Institute of Plant Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
4. Guangxi Key Laboratory of Agro‐Environment and Agro‐Product Safety, Agricultural College Guangxi University Nanning China
Abstract
AbstractBACKGROUNDThe push–pull strategy is considered as a promising eco‐friendly method for pest management. Plant volatile organic compounds (PVOCs) act as semiochemicals constitute the key factor in implementing this strategy. Benzyl alcohol and geraniol, as functional PVOCs, were reported to regulate insect behavior, showing the potential application in pest control. Using geraniol as lead, a geraniol derivative 5i with fine repellent activity was discovered in our previous work. In order to explore novel, eco‐friendly aphid control agents, a series of benzyl geranate derivatives was designed and synthesized using 5i as the lead and benzyl alcohol as the active fragment.RESULTSBenzyl alcohol was firstly evaluated to have repellent activity to Acyrthosiphon pisum. Based on this repellent fragment, a series of novel benzyl geranate derivatives was rationally designed and synthesized using a scaffold‐hopping strategy. Among them, compound T9, with a binding affinity (Kd = 0.43 μm) and a substantial repellency of 64.7% against A. pisum, is the most promising compound. Molecule docking showed that hydrophobic and hydrogen‐bonding interactions substantially influenced the binding affinity of compounds with ApisOBP9. Additionally, T9 exhibited low‐toxicity to honeybees and ladybugs.CONCLUSIONUsing a simple scaffold‐hopping strategy combined with active fragment benzyl alcohol, a new derivative T9, with high aphid‐repellency and low‐toxicity to nontarget organisms, can be considered as a novel potential eco‐friendly aphid control agent for sustainable agriculture. © 2023 Society of Chemical Industry.
Funder
National Natural Science Foundation of China
Subject
Insect Science,Agronomy and Crop Science,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献