An LBB‐stable P1/RNP0 finite element based on a pseudo‐random integration method for incompressible and nearly incompressible material flows

Author:

Feulvarch Eric1ORCID,Brosse Alexandre2ORCID,Vincent Yannick3

Affiliation:

1. Univ. Lyon, Ecole Centrale de Lyon, LTDS, UMR 5513 CNRS Saint‐Etienne France

2. Framatome Lyon France

3. ESI Group Lyon France

Abstract

AbstractThe aim of this work is to propose a new nodal treatment of the pressure for tetrahedral or triangular meshes devoted to the simulation of incompressible and nearly incompressible material flows. The approach proposed has the interest of fulfilling numerically the LBB condition for P1‐type discretizations over a wide range of element sizes. Thus, the existence of an error estimate is ensured and there is no need for a stabilization technique. For more convenience, the new P1/RNP0 formulation is first detailed for the Stokes problem. It is based on a RNP0 (Random Nodal P0) approximation of the pressure with constant values on nodal subcells whose size is defined by means of a pseudo‐random number generator. For nearly incompressible material flows, the numerical approach is extended to problems involving von Mises elasto‐plasticity. Examples are presented to show the relevance of the new approach for Eulerian and Lagrangian formalisms.

Publisher

Wiley

Subject

Applied Mathematics,General Engineering,Numerical Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3