Making quantum chemistry compressive and expressive: Toward practical ab‐initio simulation

Author:

Yang Jun12ORCID

Affiliation:

1. Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong Hong Kong China

2. Hong Kong Quantum AI Lab Limited Hong Kong China

Abstract

AbstractAb‐initio quantum chemistry simulations are essential for understanding electronic structure of molecules and materials in almost all areas of chemistry. A broad variety of electronic structure theories and implementations has been developed in the past decades to hopefully solve the many‐body Schrödinger equation in an approximate manner on modern computers. In this review, we present recent progress in advancing low‐rank electronic structure methodologies that rely on the wavefunction sparsity and compressibility to select the important subset of electronic configurations for both weakly and strongly correlated molecules. Representative chemistry applications that require the many‐body treatment beyond traditional density functional approximations are discussed. The low‐rank electronic structure theories have further prompted us to highlight compressive and expressive principles that are useful to catalyze idea of quantum learning models. The intersection of the low‐rank correlated feature design and the modern deep neural network learning provides new feasibilities to predict chemically accurate correlation energies of unknown molecules that are not represented in the training dataset. The results by others and us are discussed to reveal that the electronic feature sets from an extremely low‐rank correlation representation, which is very poor for explicit energy computation, are however sufficiently expressive for capturing and transferring electron correlation patterns across distinct molecular compositions, bond types and geometries.This article is categorized under: Electronic Structure Theory > Ab Initio Electronic Structure Methods Software > Quantum Chemistry Software > Simulation Methods

Funder

Research Grants Council, University Grants Committee

University Research Committee, University of Hong Kong

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3