Recanalize ureteral stents with focused ultrasound

Author:

Singh Rohit1,Samaddar Abhirup1,Duchene David2,Waller Stephen3,Yang Xinmai1

Affiliation:

1. Institute for Bioengineering Research and Department of Mechanical Engineering University of Kansas Lawrence Kansas USA

2. Department of Urology University of Kansas Medical Center Kansas Kansas USA

3. Division of Infectious Diseases University of Kansas Medical Center Kansas Kansas USA

Abstract

AbstractBackgroundMaintaining ureteral patency is imperative to preventing renal injury and systemic infection. Ureteral stents are small conduits connecting the kidney and the bladder. They have been widely used to treat ureteral obstructions and ureteral leaks. The most problematic and frequent stent‐associated complication is stent encrustation. This occurs when mineral crystals (e.g. calcium, oxalate, phosphorus, struvite) are deposited onto the surface and internal lumen of the stent. Encrustation can lead to the obstruction of a stent and increases risk of systemic infection. As a result, ureteral stents need to be replaced typically every 2–3 months.PurposeIn this study, we present a non‐invasive, high‐intensity focused ultrasound (HIFU)‐based technique to recanalize obstructed stents. By taking advantage of the mechanical force produced by a HIFU beam, including acoustic radiation force, acoustic streaming, and cavitation, HIFU can break up encrustations, clearing the stent of obstruction.MethodsThe ureteral stents for this study were obtained from patients undergoing ureteral stent removal. Under the guidance of ultrasound imaging, the encrustation in the stents were located, and then targeted by HIFU at frequencies of 0.25 and 1 MHz. The duty cycle of HIFU was 10%, and the HIFU burst repetition rate was 1 Hz, while the HIFU amplitude was varied to find the threshold pressure that would displace encrustations. The treatment duration was limited at 2 min (or 120 shots from HIFU). The treatments were carried out in two different orientations (parallel and perpendicular) of the ureteral stent with respect to the HIFU beam. For each setting, five treatments were conducted for a maximum duration of 2 min. During the entire treatment, an ultrasound imaging system was used to monitor the movement of encrustations inside the stent. The peak negative HIFU pressures needed to move the encrustations inside the stent was recorded for quantitative analysis.ResultsOur results demonstrated that at both 0.25 and 1 MHz ultrasound frequencies, obstructed stents could be recanalized. At 0.25 MHz, the needed average peak negative pressure was 0.52 MPa in parallel orientation and 0.42 MPa in perpendicular orientation. At 1 MHz, the needed average peak negative pressure was 1.10 MPa in parallel orientation and 1.15 MPa in perpendicular orientationConclusionsThis first in‐vitro study has demonstrated the feasibility of non‐invasive HIFU to recanalize ureteral stents. This technology has a potential to reduce the need for ureteral stent exchange.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3